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We  present  the  equilibrium  and  dynamical  properties  of liquid  sodium  (Na)  and  lithium (Li),  based  on
embedded  atom  models,  using  molecular  dynamics  simulations.  In particular,  we  present  vapor–liquid
equilibria,  critical  properties,  diffusivity,  shear  viscosity  and  excess  entropy  of  liquid  Na  and  Li. Critical
temperatures  obtained  in the  current  work  are  2462  K  and  5649  K  for Na  and  Li,  respectively.  On  the
other  hand,  critical  density  for Na  is  0.3493  g/cm3 and  that for Li  is 0.1553  g/cm3.  Critical  pressures  based
on  the  exiting  EAM  models  for Na and  Li  are  113  bar  and  1686  bar,  respectively.  The  relation  of  excess
entropy  and  dynamical  properties  is  examined  in  the  framework  of  existing  scaling  laws.  We  observed
ithium
apor–liquid
iffusivity
hear viscosity
caling laws

an  exponential  nature  between  the dimensionless  scaled  diffusion  constant  and  the  approximate  excess
entropy  for  liquid  Na  and  Li,  as also  observed  for  other  liquid  metals.

© 2011 Elsevier B.V. All rights reserved.
AM
olecular dynamics

. Introduction

Thermophysical properties such as the vapor–liquid equi-
ibrium data of various metallic liquids are extremely useful
n numerous technological applications. Starting from domestic
linical thermometer to high temperature nuclear reactor, from
etallurgical industry to electronic industry, liquid metals are of

ignificant usage [1–5]. Hence, these fluids are being studied by
arious means. Experiments with liquid metals are difficult to
onduct due to the associated high temperature and pressure;
onsequently, theoretical and molecular simulations are widely
opular means to study liquid metals.

Absence of suitable force fields for liquid metals was  a big hin-
rance in the study of these materials for a long time. An effort was
ade using Morse potential and central force model to calculate

he elastic constant of a few metals [6].  Although the results were
atisfactory, the model had limitations. Quantum based band the-
ry came into picture in the middle of the 20th century [7].  Cluster
ethods [8] also failed to handle the size effect. Next, two body
nteraction potentials or pair potential methods were derived both
rom fundamental considerations [9,10] and experimental means
11,12]. From this pair potential method, the energy calculation was

∗ Corresponding author. Tel.: +91 512 2596141; fax: +91 512 2590104.
E-mail addresses: atanumta@iitk.ac.in (A.K. Metya), hens.abhiram@gmail.com

A.  Hens), jayantks@iitk.ac.in (J.K. Singh).

378-3812/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.fluid.2011.08.026
direct; however, it required the use of volume dependent energy to
describe the elastic properties of the metal. Exact calculation of this
volume is often difficult in certain systems like ones with surfaces,
fractures, etc. Moreover this pair potential method was  not appli-
cable in the case of chemically active species. In order to include
all surfaces, fractures, impurities, alloys, etc., Daw and Baskes pro-
posed the concept of embedded atom method in 1983 [13,14].
The embedded atom method was  applied for few liquid transition
metals and the results were in good agreement with the experi-
mental data which supported the applicability of the EAM method
[15,16].

Molecular simulation study of liquid Na was  started about
30 years back with molecular dynamics study of liquid Na near
its melting point by Miranda and Torra [17]. Using five different
potential functions computed from a local pseudopotential and a
variety of dielectric functions, some properties like specific heat
and radial distribution functions were calculated. Maiti and Falicov
[18] derived a phase diagram for Na clusters up to N = 1000 based
on first order pseudopotential calculations and the Lindeman cri-
terion for melting. Some experimental works on melting of dense
Na at different pressures were done by Gregoryanz et al. [19]. The
Morse potential energy function was formulated for describing
pair potential functions for metals [20,21]. Lincoln et al. [6] further

refined the Morse potential for different metals using some exper-
imental data. Using these potentials vapor–liquid coexistence
curves were studied for different metals including Na by Singh
et al. [22]. On the other hand, very few works on the vapor–liquid

dx.doi.org/10.1016/j.fluid.2011.08.026
http://www.sciencedirect.com/science/journal/03783812
http://www.elsevier.com/locate/fluid
mailto:atanumta@iitk.ac.in
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dx.doi.org/10.1016/j.fluid.2011.08.026
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hase equilibria of metals are reported using more precise models
uch as EAM. For example, Bhatt et al. [23] have calculated critical
roperties of aluminium using EAM potentials and Aleksandrov
t al. [24] calculated VLE data of Cu using EAM potential. Similar to
he case of liquid sodium, not much work has been done to obtain
apor–liquid coexistence of other alkali metals such as Li. Though,
sing molecular dynamics some work on liquid lithium based on

nter ionic effective potential has been reported by Canales et al.
25,26] and the results were in good agreement with experiments
26–28].

One of the objectives, in this work, is to investigate the VLE of
lkali metals, in particular of sodium and lithium based on newly
ormulated EAM models [29,30]. In addition to the phase equilibria,
e also investigate the structure–dynamical property relations, in

he context of entropy scaling law, of these liquid metals. The idea
f entropy scaling law relationship for transport coefficients started
round 1977 for simple liquids. The excess entropy is important in
he case of monatomic liquids since many transport properties such
s diffusivity and viscosity follow the scaling relationship [31–34].
he excess entropy is defined as the difference between the liq-
id and that of the equivalent ideal gas. The excess entropy can
e approximated by the two body approximation [35,36] which is
enoted by S2 and is given by

2 = −2��

∫
{g(r) ln[g(r)] − [g(r) − 1]}r2 dr, (1)

here g(r) is the radial distribution function (RDF), � is the num-
er density, and S2 is given in unit of kB per particle. The advantage
f using RDF is that this quantity is readily measurable in either
xperiments or simulations. S2, though approximate measure, can
rovide an accurate structural measure of the thermodynamics
xcess entropy. Using EAM models [16,37,38],  various workers
ave studied structural and transport properties of liquid metals,
nd its scaling law relating the structural and dynamical prop-
rties [39]. However, scaling law analysis of structure–dynamics
elation has not been studied well for alkali metals using EAM
odels.
Dzugutov [40] proposed a universal scaling law, which relates

he diffusion coefficient to excess entropy (S2). The scaled diffusion
oefficient, D* = D/�2� , for simple liquids system, is related to the
xcess entropy through the following relation

∗ = D

�2�
= 0.049 exp(S2), (2)

here D is the self diffusivity, � is the hard sphere diameter and �
s the collision frequency which according to Enskog theory [41] is:

 = 4�2g(�)�

√
�kBT

m
, (3)

here g(�) is the RDF evaluated at the hard sphere diameter, � is
he number density, T is the absolute temperature, kB is the Boltz-

ann constant and m is the atomic mass. The above scaling law was
econfirmed by Hoyt et al. [39] using a computer simulation using
AM models for some liquid metals. They observed some scatter in
he data; however, with the use of the more accurate excess entropy
alculation rather than the S2 form, there appears to be less scatter
n the data.

In another approach, microscopic reduction parameters (den-
ity and temperature) were chosen for the transport coefficients,
iz. a mean interparticle distance, d = (V/N)1/3 = �1/3, and the
elocity, vth = (kBT/m)1/2. Rosenfeld [32,34] defines the following

imensionless scaled diffusion coefficient:

∗ = D
�1/3

(kBT/m)1/2
. (4)
uilibria 313 (2012) 16– 24 17

Based on hundreds of simulation results for the dimensionless
scaled diffusion coefficient, Rosenfeld [32,34] proposed the scaling
law as

D∗ = A exp(˛S2), (5)

with A equal to 0.6 and  ̨ equal to 0.8. This semi-empirical scaling
law was recognized by many authors [42–44].

The second objective of this work is to calculate dynamical prop-
erties viz., diffusivity and shear viscosity, of the liquid alkaline
metals, Na and Li, using EAM potential proposed by Belashchenko
[29,30] and examine the relationship between excess entropy and
scaled diffusivity.

The paper is organized as follows. In the next section, we present
the force field used to model the interactions between atoms. Sec-
tion 3 introduces the methodology and simulation details. Section
4 presents the simulation results and that is followed by the con-
clusions.

2. Model

The embedded atom model, or EAM, describing the energy
between two atoms and is related to the second moment approx-
imation to tight binding theory. These models are particularly
appropriate for metallic systems. The original model was  proposed
by Daw and Baskes [13]. The potential energy of a monoatomic
system is represented as [29,30]

Upot =
∑
i

˚(�i) +
∑
i<j

ϕ(rij), (6)

where ˚(�i) is the embedding potential of the ith atom which
depends on the effective electron density �i =

∑
j (rij), at the point

of location of the centre of the atom,  (rij) is the contribution to
electron density and j represents the neighbor atoms. ϕ(rij) is simple
pair potential between ith and jth atom. rij is the distance between
ith and jth atom.

The function ˚(�i) for liquid sodium [29] is parameterized
as

˚(�) = a1 + c1(� − �0)2 at �1 < � < �6, (7)

˚(�) = ai + bi(� − �i−1)(� − �i−1) + ci(� − �i−1)2

at �i < � < �i−1 (i = 2, 3, 4, 5),  (8)

˚(�) = [a6 + b6(� − �5) + c6(� − �5)2]

[
2
�

�5
−

(
�

�5

)2
]

at � < �5, (9)

˚(�) = a7 + b7(� − �6) + c7(� − �6)m at �6 < � < �7, (10)

˚(�) = a8 + b8(� − �7) + c8(� − �7)n at � > �7. (11)

In case of lithium, the expression of embedding potential is not
much different. Eqs. (7) and (8) are used in addition to the following
equations for the case of lithium [30]:

˚(�) = [a6 + b6(� − �1) + c6(� − �1)2]

[
2
�

�5
−

(
�

�5

)2
]

at � < �5, (12)

˚(�) = a7 + b7(� − �0)m at � ≥ �6. (13)
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Table 1
Parameters of embedding functions and electron density for liquid sodium [29] and lithium [30].

Parameters

�0–7 ai bi ci m n p1 p2 rc (Å)

Na

1.0000 −0.33140 0.1619 1.15 1.42 3.4418 1.0245 10.78
0.9000 −0.32980 −0.3238 −0.170
0.8000 −0.32820 0.00162 −0.275
0.7000 −0.3312 0.05662 0.600
0.6200 −0.3318 0.15262 0.880
0.2800 −0.282 −0.4458 5.000
1.1700 −0.3267 0.05505 −0.100
2.6000 −0.3989 −0.0663 0.3350

Li

1.0000 −0.880900 0.0430 1.50 3.04500 1.22000 7.50
0.9000  −0.880470 −0.008600 2.000000
0.8400 −0.872754 −0.248400 −1.09000
0.7000 −0.859314 0.0566000 1.300000
0.4800 −0.808846 −0.515400 0.300000
0.4200 −0.776842 −0.551400 0.000000
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The electron density function is taken in the form [29,30]

(r) = p1 exp(−p2r). (14)

The pair potential for liquid sodium [29] is defined in the fol-
owing form

(r) = 0.786149 exp[1.2(2.55 − r)] (eV) at r ≤ 2.25 Å, (15)

m(r) = bm0 +
6∑
n=1

bmn(r − rm)n

at rm−1 < r < rm (m = 2, . . . , 11). (16)

In case of liquid lithium, the pair potential form is [30]:

(r) = 0.401569 exp[2.10(2.35 − r)] (eV) at r ≤ 2.35 Å. (17)

Tables 1 and 2 summarize all the parameters of the potentials
or liquid sodium and lithium.

. Methodology and simulation detail

.1. Analysis of vapor–liquid phase transition

In this work, the interfacial thickness calculated from the fit of
he density profile obtained from NVT simulations to the following
xpression [45].

(z) = 0.5(�l + �v) − 0.5(�l − �v)erf

(√
�(z − l)
d

)
, (18)

here �l and �v are coexisting densities of liquid and vapor phases,
espectively; d is the interfacial width; and l is the position for Gibbs
ividing surface.

The critical parameters are estimated by using the coexistence
ata (obtained from fitting profiles for various sub critical tem-
eratures) and the least squares fit of the following scaling law
46]:

l − �v = C1

(
1 − T

)ˇc
, (19)
Tc

here �l and �v are coexisting densities of liquid and vapor phases,
espectively, and C1 and ˇc are fitting parameters. The critical tem-
erature Tc obtained from the above equation is used to calculate
the critical density, �c, from the least square fit to the law of recti-
linear diameter [47]:

(�l + �v)
2

= �c + C2(T − Tc), (20)

where C2 is the fitting parameter.
Critical pressure is evaluated using the least square fitting to the

following expression:

ln P = A + B

T
, (21)

where A and B are constants.

3.2. Diffusivity and shear viscosity calculations

The diffusion coefficient (D) can be obtained using two equiva-
lent equilibrium methods [48]. One is the Einstein relation, where
diffusion coefficient is related to the slope of the mean square dis-
placement (MSD) of the particles over time:

D = 1
6

lim
t→∞

d

dt

〈
[ri(t + t0) − ri(t0)]2〉 . (22)

Another one is the Green–Kubo (GK) integration over the veloc-
ity autocorrelation function

D = 1
3

∫ ∞

0

Vi(t + t0) · V0(t0) dt. (23)

The shear viscosity can be determined using GK integration over
autocorrelation function (ACF) of P˛ˇ, the off diagonal pressure ten-
sor components

� = V

kBT

∫ ∞

0

〈
P˛ˇ(t + t0) · P˛ˇ(t0)

〉
dt. (24)

Phase equilibria of liquid sodium and lithium are evaluated
using the slab based molecular simulation technique [49,50]. In
particular, molecular dynamics in the canonical (NVT) ensemble
using LAMMPS [51] is conducted, and the vapor–liquid density pro-
file of the coexisting vapor and liquid phases is used to obtain the
coexistence saturated densities. In this work, we  have considered
N = 8000 atoms for Na and N = 16,000 atoms for Li. Periodic bound-
ary condition is applied in all the three directions. We  start with the

construction of the simulation box (see Fig. 1) with the liquid slab in
the centre of a rectangular box. The length of the box along z direc-
tion is kept three times greater than those of x and y directions. The
liquid slab in the box is in coexistence with the vapor phase filling
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Fig. 1. Initial configuration for the vapor–liquid coexistence studies in the slab based
method.

up rest of the simulation cell. There are two  vapor–liquid inter-
faces in the simulation box due to the periodic boundary condition
applied. A time step of 0.5 fs is fixed for both Na and Li. For Na 106

time steps are provided for equilibration and another 6 × 10−5 time
steps are taken for production. In case of Li, 1.8 × 106 and 1.2 × 106

time steps are taken for equilibration and production respectively.
Nose–Hoover thermostat is considered for fixing the temperature
in both the cases. For Na, slab based MD simulations are performed
for temperature ranging from 400 K to 2000 K; and, for Li, the tem-
perature range was  2000–5100 K. During the production step, we
collect configurations for property evaluations. Using 600 config-
urations, we  evaluate the average density profiles of liquid–vapor
system. Similarly, we obtain the density profiles for different tem-
peratures in both the cases. To simulate the diffusivity and shear
viscosity of these alkaline metals, the canonical (NVT) ensemble
based MD simulations are performed. The diffusion coefficient is
calculated from MSD  using Einstein formula Eq. (22), and shear
viscosity is calculated using GK formalism Eq. (24).

4. Results and discussion

4.1. Vapor–liquid transition and interfacial properties

We start the discussion with Fig. 2, which shows the configu-
rations with increasing temperature for sodium and lithium. An
interesting observation seen in case of vapor phase of sodium is
that with increase in the vapor density, atoms in the vapor phase
aggregate. The aggregation is found to increase with temperature.
This behavior is well known for metallic system [52]. Magnetic sus-
ceptibility and optical absorption measurements for alkali metals
in the vapor phase also show a high concentration of clusters as the
vapor density increases [52]. Metallic clusters in the vapor phase
have substantially lower ionization energies and higher electron
affinities compared to that of a single atom, as seen for cesium in
the vapor phase [53]. Therefore the probability of electron transfer
from one atom to a large cluster is effectively increases. The forma-
tion of high amount of diamagnetic aggregates in the critical region
of fluid alkali metals is completely consistent with the behavior of
the magnetic properties [54]. This behavior is not so apparent in
case of lithium, though, in our simulations.

Fig. 3(a) and (b) presents the z directional density profiles of Na
and Li at different temperatures, respectively. As the temperature
increases, liquid density gradually decreases and the correspond-
ing vapor density increases. However at lower temperature, we
observe interesting accumulation of particle at the interface. This is
evident for sodium closer to melting temperature. This behavior is
not seen in simple or dielectric fluids. The peaks at the interface in
the low temperature density profiles are common in case of liquid
metals. Density profile of liquid gallium also exhibits similar kind of
peaks at the interface [55]. This may  be due to the different nature

of the force of interaction between the atoms in the two  cases. The
atomic interaction in liquid metal strongly depends on associated
delocalized electron distribution; whereas in case of dielectric
liquid, it depends on localized electron density only. As a result,
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 at different temperatures: (a) sodium and (b) lithium.
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Fig. 2. Final configurations of the simulation box

tomic interaction in liquid metal depends on the position of the
nhomogeneous interface and the extent of this inhomogeneous
ransition zone is of the order of a few atomic diameters [55]. In

ase of a dielectric liquid, at temperatures near freezing point,
he normal density distribution (along the z direction) falls mono-
onically from bulk liquid to bulk vapor value within two atomic
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Fig. 4. Interfacial thickness as a function of temperature of sodium and lithium.

diameter distances. This prediction is supported by experiments
[56,57]. On the other hand for liquid metals, the longitudinal
density distribution in the liquid–vapor interface, near the freezing
point is predicted to have strong oscillations penetrating three
to four atomic diameters into the bulk liquid [57–59].  We  expect
similar behavior for lithium at lower temperatures. Interfacial
thicknesses obtained from fitting procedure [45] at different
temperatures are shown in Fig. 4. The figure clearly illustrates the
increase in the interfacial thicknesses with increasing temperature,
as expected. Such behavior is akin to that seen for simple systems.

Fig. 5 presents the vapor–liquid coexistence data obtained
from averaging p(z) over appropriate regions. The vapor density
is obtained by averaging the density profiles on both sides of the
liquid film. The statistical error in the average densities is calcu-
lated from the standard deviation of block average densities. From
the simulation results at different temperatures, critical temper-
ature is determined using Eq. (19). Critical temperature for Na in
this work is found to be 2462 K whereas experimental critical tem-
perature is 2485 K [52]. Hence deviation from the experimental
value is within 1%. Using this critical temperature, critical density,
�c was calculated using Eq. (20) and it is found to be 349.3 kg/m3,
which is about 16% higher than that known from the experiment,
300 kg/m3 [52]. Results of critical temperature and density for Na,
using Morse potential, by earlier workers [22], were 3932 K (Tc)

and 353 kg/m3 (�c) respectively. Hence prediction of critical tem-
perature and critical density using EAM potential is significantly
better.
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ize.

In case of Li, following the same method mentioned above,
ritical temperature and critical density are calculated and found
o be 5649 K and 0.1553 g/cm3, respectively. There are no exact

easurements of critical points for Li [60]. Estimates of critical tem-
eratures vary well over 1000 K. However, Martynyuk [61] reported
he values of critical temperature and density of Li as 3350 K and
.086 gm/cm3 respectively. The present results based on the EAM
odel of Li are over estimated with respect to Martynyuk data [61].
The vapor pressures for both the metals as a function of

emperature are also estimated in this work. A separate molec-
lar dynamics at a given vapor density under NVT ensemble is
onducted to find the vapor pressure of the system. The vapor
ensity is taken from the VLE data generated using slab based
olecular dynamics method. Fig. 6 shows the plot of logarithmic

apor pressure as a function of inverse of temperature. The vapor
ressure exhibits linear relationship below critical temperature
n a semi-log scale against inverse of temperature. Hence, the
lausius–Clapeyron expression given by Eq. (21) is applicable and

s used to determine the critical pressure for Na and Li metals. The
stimated critical pressure of Na is 113 bar, which is lower than

12840
2
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8
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ln
(P

)

104 /T (K)

ig. 6. Plot of saturation vapor pressure as function of inverse of temperature.
Fig. 7. The mean square displacements with time over a wide range of temperatures
for  liquid metals of (a) Na and (b) Li.

the available experimental value of 248 bar [52]. The Li critical
pressure of 1686 bar is significantly higher than the reported value
of 544 bar [61]. This critical pressure of Li is vastly over estimated
due to larger critical temperature value estimated in this work.

4.2. Time-dependent transport coefficients and scaling law
relationship

Fig. 7 displays the mean square displacement (MSD) of liquid
Na and Li as a function of simulation time. The NVT simulations
are conducted at saturated liquid conditions (densities) as obtained
from the slab based molecular dynamic simulations. The slope of
the curves in Fig. 7 is used to calculate self diffusivity according
to Eq. (22). The shear viscosities (�) are computed by obtaining
the pressure autocorrelation functions (PACF) for the off-diagonal
components of pressure tensor by averaging over different time
origins (see Eq. (24)). Fig. 8 presents the normalized values of the
PACF for liquid Na and Li. It is interesting to note that the fluctuation
in PACF decays very fast and, for both the cases, is quite small after
∼1 ps and fluctuates around zero. This type of PACF is well known
for liquid system like water [62]. In case of polymer system, the

ACFs for the off-diagonal components of the pressure tensor in the
short-time region differ from that in long time region [63]. Fig. 9
shows the shear viscosity as a function of integration time for Na
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Table 3
Diffusivities (D) and shear viscosities (�) of liquid sodium and lithium at different temperatures.

T (K) Density (g/cm3) D (10−5 cm2 s) � (mPa s)

Our calc. Expt. Other MD Our calc. Expt. Other MD

Na

378 0.3314 4.65 ± 0.07 4.32a

473 0.3240 7.79 ± 0.17 8.41a 0.380 ± 0.0131 0.450f

573 0.3202 11.18 ± 0.202 13a 0.292 ± 0.048 0.340f

673 0.278f

723 0.3061 16.411 ± 0.41 0.2412 ± 0.005
773  0.293f

823 0.2993 19.73 ± 0.455 0.2213 ± 0.002
873 0.212f

1200 0.2750 33.55 ± 0.462 0.1767 ± 0.004
1203 0.164f

1500 0.2556 47.16 ± 0.709 0.1465 ± 0.002

Li

463  0.5139 9.99 ± 0.05 7.34b

470 0.5129 9.94 ± 0.24 6.4c 6.6, 6.3c 0.358 ± 0.009 0.57e 0.55c

523 0.5090 12.76 ± 0.22 0.303 ± 0.002
843  0.4796 33.75 ± 0.54 25.8d 24.7, 25c 0.171 ± 0.004 0.30d 0.24c

868 0.4777 35.85 ± 1.27 0.172 ± 0.005
1000 0.4639 45.88 ± 1.23 0.147 ± 0.001
1500 0.4139 88.33 ± 1.57 0.113 ± 0.004
2000 0.3679 136.23 ± 3.9 0.092 ± 0.003
2500 0.3242 196.83 ± 2.6

a Ref. [64].
b Ref. [30].
c Ref. [26].

a
v

v
s
s
o
a
i
b
c
c
i
4

F
p
T

d Ref. [27].
e Refs. [27,28].
f Ref. [65]

nd Li under the same conditions as for Fig. 8. Clearly, the shear
iscosity is seen to converge convincingly.

There are a few experimental data of self diffusion and shear
iscosity available for alkali metals. Table 3 lists both available
imulation [26] and experimental data [26–28,30,64]. Fig. 10
hows MD  results of diffusion coefficients, based on EAM potential,
f liquid sodium and lithium at different temperatures along with
vailable literature data. The nonlinear increase of the diffusiv-
ty with temperature is reliable; due to the collision frequency
etween atoms accelerates with increasing temperature. The

omparison with experimental value shows that for liquid Na, the
alculated results are close to the experimental data. However,
n case of liquid Li, the present computed diffusion coefficient at
63 K is 10% larger than the experimental data [30]. In comparison
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he PACFs are averaged for 5 ns.
to the MD results available in the literature for liquid lithium [26],
the current EAM model for Lithium is incapable to capture the
dynamical properties quantitatively. Fig. 11 shows the shear vis-
cosity results of our present simulations for various temperatures
compared with experimental data [26,27,65].  Fewer experimental
results of shear viscosity are available for both the alkali metals.
The present computed shear viscosity values of sodium reasonably
agree with experimental data [65] at higher temperatures (above
700 K); however discrepancies are observed at lower tempera-
tures. The calculated shear viscosity values of liquid lithium, using
the EAM model, are considerably much lower compared to the
available experimental values [26,27]. As observed for diffusivity

results, the EAM model of lithium is inferior to the effective
interaction available in the literatures [26,27,30].

Fig. 12(a) and (b) shows Dzugutov scaled diffusion coefficient
D∗
DZ (Eq. (2))  and Rosenfeld scaled diffusion coefficient D∗

RO (Eq.
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Fig. 9. The shear viscosity as a function of integration time.
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4)), versus two body approximation of excess entropy, S2, as com-
uted from Eq. (1).  In Fig. 12(a) we compared the present simulation
esults to the original best fit determined by Dzugutov; this scal-
ng law holds reasonably well for the pure liquid metals. Fig. 12(b)
hows our simulation data are lower than the original work of
osenfeld. The scattering of data in Fig. 12(a) and (b), does not mean
n invalidity of the basic proposition of both the scaling laws, but
t may  suggest that the two body approximation of excess entropy
2 is not completely reliable when utilizing many body EAM poten-
ials. Hoyt et al. [39] also observed some scattering in the data
rom the Dzugutov scaling law for liquid transition metals using
AM potential. However, use of the more accurate calculation of
xcess entropy rather than the approximate S2 form exhibits less
cattering in the data. Baranyai and Evans [36] found that the dif-
erence between the actual excess entropy and the approximate

2 value was nearly constant over a wide range of densities for
ennard–Jones system. However, based on our simulation results,
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Fig. 12. The scaled diffusion coefficient versus the S2, approximation of the excess
entropy. The solid line is the scaling law of (a) Dzugutov (Eq. (2))  and (b) Rosenfeld
(Eq.  (5)).

we conclude that Dzugutov scaling law is more appropriate for
alkali metals such as Na and Li.

5. Conclusion

We  applied EAM potential to study the vapor–liquid phase tran-
sition, the structural and transport properties of liquid sodium and
lithium from molecular dynamics using LAMMPS. Using slab based
technique, we have calculated the vapor–liquid density profile and
subsequently VLE of sodium and lithium using EAM model for the
first time. Sodium atoms are found to accumulate near the interface
at lower temperature similar to some other liquid metals. Finally,
we have calculated the vapor–liquid phase diagram and found the
critical temperature and density. For Na, the obtained critical tem-
perature, 2462 K, is in good agreement with the experimental value,
2485 K. However, critical density estimate, in this case, is higher
than the experimental work. In case of Li, the obtained values of crit-
ical temperature and density are 5649 K and 0.1553 g/cm3, respec-

tively, which are over estimated than the earlier reported results.
We have also calculated the interfacial thickness of Na and Li at
different temperatures and shear viscosity, diffusivity, and their
variation with temperature and excess entropy. The calculated
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iffusion coefficients of liquid sodium are in good agreement with
xperimental results. The shear viscosity of liquid sodium at higher
emperature around 823 K is found to be 0.2213 mPa  s. The results
re in good agreement at higher temperatures but deviates from
he experimental data at lower temperatures. The diffusivity and
hear viscosity of liquid lithium are significantly higher and lower,
espectively, compared to the experiments values. We  also pre-
ented the reduced diffusion coefficient defined by Rosenfeld and
xcess entropy based on pair correlation function. Our results sug-
est that, both scaling laws are valid for alkali metals system. The
bove results clearly suggest that EAM model of liquid Na is rea-
onably robust; however, such is not the case for EAM model of
iquid Li.
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